Answers to Some Things For You To Think About

1)

Writing code is a challenge from the perspective of how to organize your code. There are some standard naming procedures and they are outlined in the book entitled “Framework Design Guidelines” written by Krzysztof Cwalina and Brad Abrams. This book is an intensive look into the design of the .NET framework.

What you need to remember when organizing and identifying your source code is that you want to make it readable. Many people talk about the need for comments, which I don’t disagree with. But comments need maintenance and if they are not maintained then they are completely useless and confusing. Imagine writing an algorithm, updating the algorithm, but not the comments. In that case the comment could mislead.

Whenever I write code I hardly comment, but code verbosely. It is my personal style because I firmly believe in writing code that reads like a book. I don’t believe in writing code that is short and hard to understand.. For example I would never write the following code.

for(int c1 = 0; c1 < b.Length; c1 ++) {

}

Instead my code would look as follows.

for(int timeSeriesCounter = 0; timeSeriesCounter < closingPrices.Length; timeSeriesCounter ++) {

}

In my code you know what each of the identifiers mean, and by combining the C# programming language with the identifiers you see that there is a loop that is iterating the closing prices of an array. My code is quite a bit more verbose than other people’s code, but you can understand what it does by reading it.

Should you adopt my style? Maybe, maybe not, it is my style, and maybe it will not work for you. To become a good programmer part of the challenge is figuring out a good coding style that is easy to read and easy to maintain.

2)

When people talk about software development they often talk about a formal approach that involves creating requirements, listing them, architecting them, and implementing them. Another approach is to use agile techniques, which are not as a structured. Yet agile is not adhoc, it is more of a structured adhoc. This is the approach that you should choose. It is beyond the scope of this book, but agile programming techniques have been shown to be very effective and solving complex programming problems.

3)

Testing a database is rather difficult because when you add something to the database it is beyond your control. Think of it as follows. You are depositing money into a bank. The bank gives you a piece of paper saying that you put money into the bank, and it makes you feel good. But what if you went to the bank showed the piece of paper and the bank refused to recognize the paper? What if the bank said, “oh I see that paper is not right because it does not contain mark x-y-z.” You can argue till you are blue in the face with the bank, but it will not change the fact that you lost your money.

The bank situation is very similar to interacting with a SQL database in that you are manipulating data stored in an external piece of software that is not under your control. Thus the challenge is to verify whether or not the operations that you performed actually worked. The general approach that I use is as follows.

1. Define action as a general method on the database (eg adding data to the database.)

2. Call action using source code.

3. Define another program, another piece of source code that verifies action or prepares the context for the action.

4. Call the other action to verify that the action is indeed correct.

The idea of this approach is to define an action that you will call in the context of your program, and define some source code that sets the context of the action. The other source code is used to ensure that the action does what is expected of it.

 4)

To verify that a file is correct you should realize that it is a similar problem to a database. And thus to verify if the file is correct, use the same approach as in question 3.

5)

If the CLR did not catch the overflow and underflow situation then you would need to write routines that would check if an overflow or underflow would occur. I would use the following logic for the addition problem, though it is not the only logic.

1. Subtract from int.Max one of the numbers to be added and store in variable result.

2. The variable result must be greater than the other number to be added.

3. If the variable result is less than the other number to be added then an overflow would occur.

6)

This question is a bit of teaser and cannot be answered as a quick and easy answer even though I am tempted to say an integer that is 32 bits wide. What I am trying to get at is that a quick rule of thumb is that a CPU is quickest at calculating using numbers that are as wide as the CPU bit size. This is because the CPU would be able to process each number within a clock cycle. Where this question becomes a teaser is that these days CPU’s do interesting things with their clock cycles and how many bits they grab.

7)

This question is a real mind bender and it is meant to get your thinking caps on. In short you can’t answer this question because you don’t have the skills to answer it. Though some of the things that should have gone through your mind is how to abstract the problem. What I wanted you to think about is how to describe something in a general context. I wanted you to consider the concept of a type as a general type, and not as a double.

