Answers to Some Things For You To Think About

1)

The question is if you would ever create a solution that contained multiple unrelated projects (eg airplane solution that contained car pieces). The answer is yes you would. What you need to remember regarding solutions and projects is that they are used to organize your code. For example if your corporation was to make wheels, then the solution would be called corporation, and the projects would be called car wheel, airplane wheel, and wheelbarrow wheel.

What you need to remember is that a solution is a basket used to organize individual projects. You could have multiple solutions that reference the same project because the project can be used in different organization contexts.

An example that comes to mind are the Express products from Microsoft. There is Visual C# Express, Visual Basic.NET Express, and so on. All of these products feature a different programming language context. Yet all of these products use the same IDE. So in solution and project description terms the Visual C# Express solution would reference C# compiler project, and IDE project. The Visual Basic.NET solution would reference the Visual Basic.NET compiler project, and IDE project.

2)

You can create your own templates as per the Visual Studio documentation entitled Visual Studio Templates
. Generally speaking you would not create your own templates. You could create your own template based on one of the following two conditions:

1)
You are creating a development tool add-on.

2)
You are in charge of a local development team and want to standardize specific project types. For example imagine if your company sells vertical applications used to manage banking applications. One project template could be called mortgage applications and would contain the essentials of creating a mortgage application.

A major reason on why you would create your own templates is to automate your development process. At the Microsoft site there is documentation entitled "Extending the Visual Studio Environment."
 Extending Visual Studio is like writing a program, except that the program interacts with Visual Studio. For example you could write automation to automatically generate a specialized grouping of files.

3)

Organizing your source code is an important aspect of your development process. Answering the question directly some individuals prefer defining a single class in a single file, others prefer defining multiple related classes in the context of a single file. I personally use both techniques depending on the context.

Getting back to the organization issue, organization involves not only files, and classes within files. Also included as an organizational issue is the naming of namespaces, class types, and method identifiers. You want to organize your code so that whenever somebody reads your code they will be able to understand what you wrote. Remember that code is a language and well-written code can easily be understood by anybody.

This book whenever possible will illustrate good programming and code organizational practices.

 4)

To run a .NET application you need a CLR. When the C# compiler converts the windows application into a CIL package a binary file is created with an extension .exe. Do not be mislead into believing that the CIL package with an .exe extension is just like any other executable. A CIL package does not need any particular extension and it is disregarded by the .NET runtime. The reason why there is an extension has to do with how the Windows operating system distinguishes an executable file from a non-executable file.

Assuming that you clicked on the CIL package with an .exe extension Windows will attempt to load a CLR. If there is no CLR then an error will result asking for you to install a CLR. Therefore when distributing a .NET application you need to remember to pre-install the .NET runtime.

If you were to take the CIL package onto another operating system like Linux or OSX it is possible to run the package if a CLR is installed. Microsoft does not support any operating system other than Windows. The Mono project
 does support other operating systems like OSX, Linux, and FreeBSD. But even with the CLR the application may not run and that has do with the referenced assemblies. Let's say that you create an application that references a specific third party library assembly. If the vendor's library assembly is not support on other operating systems then your application will not run. Mono in general is a good cross-platform solution for your .NET applications. And if you are interested in writing .NET applications on Linux or OSX then I advise you to look at the IDE X-Develop
. X-Develop is a cross-platform IDE that supports the Java and .NET runtimes.

5)

Whenever you add user interface elements to a form Visual C# Express will use a default naming convention of type appended with a numeric identifier. The default naming convention should not be used, and each element that you make use of in your code should be renamed to something meaningful. Figure 1.30 illustrates how to rename textbox1 to txtOutput.

[image: image1.png]T It | o

=R}

4

xoqio0L

Start Page

Classl.cs | Program.cs ' Forml.cs [Design]| Progre

EEX)

1. Context sensitive
click textbox

View Code

4 Bring o Front 2. Select “Properties” property identifier

4. Find “(Name)”

44 Send toBack

@ Lock Controls
Select Formt’

% cu
L3 copy

Delete

%
S Properties

T

3. Properties window
appears on right hand
side of IDE

txtOutput
GenerateMember True

Locked False
Modifiers Private
B Focus
Causesvalidation True
B Layout
Anchor Top, Left
Dock None 5. Change text to
@ Location 23,41 .
) txtOutput

Indicates the name used in code to idsmtFy the GBiect.

Figure 1.30 Renaming of textbox1 to txtOutput using properties window.

When you have renamed the textbox to txtOutput, Visual C# Express will modify any references of textbox1 to txtOutput.

6)

Example3 represents a questionable programming practice in that the library assembly assumes it will be consumed by a console application. The example was coded as is to illustrate how an application can consume a library. A better practice would have been to provide a general output mechanism that the library would use to generate output. Though doing that at this early stage in the book would add massive amounts of complexity without any added benefit.

� http://msdn2.microsoft.com/en-us/library/6db0hwky(VS.80).aspx or do a search with the terms ""Visual Studio templates"

� http://msdn2.microsoft.com/en-us/library/esk3eey8(VS.80).aspx

� http://www.go-mono.com

� http://www.omnicore.com

_1257658708

